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Abstract

This paper investigates how investment in automation-intensive goods impacts
on worker flows at the firm level (i.e. net growth, but also hiring and separation
rates) and, within firms, across occupational categories. Resorting to an
integrated dataset encompassing detailed information on firms, their imports,
and employer-employee data for French manufacturing employers over the
period 2002-2015, we identify ‘automation spikes’ using imports of capital
goods embedding automation technologies. FEven after controlling for firms’
non-random selection into automation, we find that automation spikes generate
an increase in firms’ contemporaneous net employment growth rate, resulting
from both a higher hiring rate and a lower separation rate. These patterns do
not appear to change significantly across different types of workers (1-digit and
2-digit occupational categories, and routine-intensive vs. non routine-intensive

jobs).
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1 Introduction

Technology is presented in the policy debate either as a major threat to employment
— reviving the concept of technological unemployment —, or as the main driver of
societal change. Such mix of fear and excitement can be explained by the difficulty to
catch-up with a moving target: quoting Schumpeter (1942, pp. 82-83), technological
change feeds a process of ‘creative destruction’, which «incessantly revolutionizes the
economic structure from within, incessantly destroying the old one, incessantly creating
a new one». New, ‘digital’ technological paradigms are currently emerging (such as the
Internet of Things, additive manufacturing, and artificial intelligence; see Rindfleisch
et al., 2017), and their development is widely regarded as able to bring about a Fourth
Industrial Revolution. This, together with the globalisation of exchanges, requires all
firms to rethink their production process so as to respond to higher levels of complexity
and adaptability (Caliendo and Rossi-Hansberg, 2012).

Assessing how innovation affects employment has long been at the centre of eco-
nomic debates, both in terms of the effects on the single person, i.e. how the changing
working conditions affect the life of people, as well as on employment at a more aggre-
gate level (Ricardo, Marx and Keynes all have discussed technological unemployment;
for recent reviews, see Mokyr et al., 2015; Piva and Vivarelli, 2017).} Yet the extent
and the manners through which digital technologies are expected to impact on work
are much broader than in previous waves of innovations.

As a consequence, the type of jobs affected is much more diffused and difficult to
identify. Previously, it was mostly manual jobs that were at risk of being replaced
by a machine. Currently, all jobs that are rich in routine-intensive, highly codified
tasks are exposed to the risk of being replaced (see, for instance, Autor et al., 2003;
Goos et al., 2014; Autor, 2015b). Moreover, this process is largely orthogonal to the
traditional classification in blue versus white collar jobs (among the others, refer to
Frey and Osborne, 2017; Trajtenberg, 2018; Furman and Seamans, 2018).?

Our work moves from two related hypotheses: i) automation happens in spikes;
ii) those spikes may have heterogeneous effects on the different components of gross
worker flows (hiring, separation, net growth rates) and across different types of work-
ers. Hypothesis (i) is grounded on the fact that our automation variable shares many
of the characteristics of investment in tangible assets. Moreover, even when consider-
ing other dimensions of automation, not related to investments, Bessen et al. (2019)
have discussed that they share the same characteristics of lumpy investments, i.e. ir-
reversibility and non-convex adjustment costs. Hypothesis (ii) is grounded on the fact
that automation may induce a reorganization in the workforce, which could have dif-
ferent implications for separation and hiring rates. Patterns of hiring and separation
rates are thus relevant to show the job creation/destruction dynamics behind the net
employment effect at the firm level.

Our work studies the impact of investment in automation on firm-level job creation
and destruction and, within firms, across occupational categories. Our analysis focuses

1 'We refer to their works in Ricardo (1891); Marx (1988); Keynes (1932).

2 In this respect, the distinction between codified and tacit knowledge, and its implication, as put
forth in a vivid way by Polanyi (1967), has been very relevant in shaping the debate around the
so-called Skill-Biased Technical Change (see among the many others Autor et al., 2003; Autor,
2015a).



on French manufacturing firms over the period 2002-2015, and relies on two exhaustive
and detailed data sources, namely DADS (Déclaration Annuelle de Donnés Sociales),
an employer-employee dataset from the French National Statistical Office (INSEE),
and the transaction-level international trade dataset by the French customs office
(DGDDI), which we employ to identify imports of automation-intensive capital goods
based on the taxonomy employed by Acemoglu and Restrepo (2018). Notice that,
given the currently available datasets, this is one of the few possibilities to assess the
impact of digital and automation technologies at the firm level. Moreover, this choice
implies that we restrict our analysis to importing manufacturing firms (see Section 2.2.3
where we discuss some potential limitations of this approach). The richness of the data
in our hand allows a highly detailed analysis, especially on the employment side. In
particular, we are able to decompose firm growth into the contributions of hiring and
separation; and to study patterns and dynamics for different types of workers.

Our work contributes to two, neighboring fields of literature. First, in more gen-
eral terms, we provide a rather detailed empirical perspective of the magnitude and
characteristics of the advent of the latest wave of innovations (see among the others,
Roco and Bainbridge, 2003; Dosi and Galambos, 2012). Our investigation on the sta-
tistical properties of imports of goods embedding automation technologies reveal that
such products display the same characteristics of capital goods, and most importantly
their spiky nature that recalls the archetypal non-convexity of the costs related to
capital adjustment (see among the many others Doms and Dunne, 1998; Cooper and
Haltiwanger, 2006).®> Indeed, similar to investment spikes, imports of capital goods
embedding automation technologies are rare across and within firms, and each event
represents a significantly high share of total investment within firms (Asphjell et al.,
2014; Letterie et al., 2004; Grazzi et al., 2016). Our automation spikes therefore repre-
sent a significant disruption in the way firms produce, and we characterise their impact
on the employment dynamics and structure of firms.

Second, more in detail, we contribute to the literature that investigates the impact
of automation or robotisation on employment. To date, most of the evidence on this
channel relies either upon indirect measures of occupations that can be impacted upon
by technological progress (see, for example, the Routine Task Intensity (RTT) index
approach used, among the others, by Autor et al., 2013 and Goos et al., 2014), or
on measures of technological adoption related to the ICT services (as in Harrigan
et al., 2016). The latter approach is to consider jobs related to STEM fields (Science,
Technology, Engineering and Math), or, as identified by Harrigan et al. (2016, 2018),
‘techies’. The authors show, using data on France, that the advent of techies led
to occupational polarization (mostly driven by between firm changes), skill-biased
productivity and increases in low-skill employment.

On the contrary, evidence on the direct effect of the most recent wave of automation
technologies is more scant. To begin with, the impact of robotisation at the more
aggregate level is investigated in Dauth et al. (2018), Acemoglu and Restrepo (2017),
Michaels et al. (2014), Graetz and Michaels (2018), and Klenert et al. (2020). Dauth

3 Standard theoretical models of investment assumed convex costs of capital adjustments yielding a
smooth process of investment over the years. More recent evidence from empirical works (see also
Nilsen and Schiantarelli, 2003) have shown that the sequence of zeros and lumps is hardly compat-
ible with a convex cost of capital adjustment. Further, due to irreversibilities in new equipment
purchases, also disinvesting is very difficult and seldom observed.
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et al. (2018) find no overall effect of the adoption of robots on German local labour
markets, but highlight a reallocation effect from manufacturing to business services.
Acemoglu and Restrepo (2017) find a negative effect of robots adoption on employment
across commuting zones in US during the period 1990-2007; whereas in Graetz and
Michaels (2018) robots are not found to decrease employment in a sample of countries
and industries during the same period, and in Klenert et al. (2020) a positive relation
between robot adoption and aggregate employment is found for the European Union
in the period 1995-2015.

Other works have instead focused on the impact of automation at the worker level.
Using a yearly firm survey on automation costs over the period 2000-2016 in the
Netherlands, Bessen et al. (2019) show that automation increases the probability of
workers separating from their employers, especially for higher-skilled workers (corre-
sponding to higher wages in their framework). Interestingly, they attribute this last
result to workers voluntarily moving out of the firm after an automation event.

Few firm-level works have restricted their attention to the effects of robots. Koch
et al. (2019), within a panel of Spanish manufacturing firms, find that robot adoption
generates net job creation; Acemoglu et al. (2020), using a small sample of French
firms that purchased industrial robots, show that employment increases faster within
adopting firms, even if the overall market-level effect may be negative.

Our work, while building on these approaches and resorting to a similar definition
of automation technologies as in Acemoglu and Restrepo (2018), moves a step further
by focusing on the firm level and on the job creation and destruction effects of au-
tomation. Indeed, while the literature, starting from the seminal work of Davis and
Haltiwanger (1990, 1992), has shown the relevance of focusing on gross job flows to
study employment dynamics, not much is known about job flows at the firm level,®
and in particular on the impact of technologies on them.

We start by showing that our chosen proxy to identify investment in automation-
intensive capital goods displays analogous properties, especially non-convexity, to the
variable that is generally employed to capture investment in capital-embodied technical
change at large.

With this in mind, we first study the correlation between such spikes and worker
flows before and after they happen, using a fixed-effect regression. Our findings show
that firms investing in goods which are intensive in automation technologies do not
display a negative trend in employment. On the contrary, automation spikes are pos-
itively correlated with preceding and contemporaneous growth in employment, which
is mainly due to lower separation rates of investing firms. However, firms’ probability
to automate may not be random, but conditioned by prior performance and character-
istics. Using a propensity score reweighting approach, which accounts for the different
dynamics of automating firms before their spike, we show that automation robustly
generates a contemporaneous net employment growth premium. Overall, two years
after the spike firms are larger than before it happened; the decision to automate
therefore has a positive impact on firms’ own employment. Note that such results are
in tune with the evidence on investment in capital goods, irrespective of their tech-

4 In turn, Michaels et al. (2014) document the job-polarization response to ICT technologies across
industries and countries in the period 1980-2004, and show a relative increase of demand for high-
versus middle-skills.

5 See, for example, Abowd et al. 1999; Bellon 2016, on France; and Moser et al. 2010, on trade.



nological content (Grazzi et al., 2016). Finally, the relationship between automation
spikes and worker flows doesn’t seem to change across different types of workers (1-
and 2-digit occupational categories, and routine-intensive vs. non routine-intensive).
These results do not change when performing several robustness checks (see Section
4.4).

The paper is structured as follows. Section 2 first presents the data and variables
that are used in the following analysis and then shows descriptive statistics on the
employment dynamics at the firm level. In Section 3, we provide evidence that imports
of capital goods embedding automation technologies behave in a way consistent with
an investment variable, and in particular they occur in spikes. Section 4 presents the
results from the regression analysis of the relationship between automation spikes, and
net and gross worker flows. We show findings both on aggregate (i.e. for all workers)
and by separate occupational categories. Section 5 concludes.

2 Data and descriptive statistics

2.1 Sources

We employ data concerning French manufacturing firms with employees over the pe-
riod 2002-2015. To construct our dataset, we merge different sources, using the unique
identification number of French firms (SIREN). The starting point is the Déclaration
Annuelle de Donnés Sociales (DADS), a confidential database provided by the French
national statistical office (INSEE) and based on the mandatory forms that all establish-
ments with employees must hand in to the Social Security authorities. In particular,
we use the DADS Postes dataset, in which the unit of observation is the ‘job’ (poste),
defined as a worker-establishment pair (and used with this meaning throughout this
section).® We restrict our attention to manufacturing firms, identified as those whose
reported main activity code (Activité Principale Exercée, APE) belongs to divisions 10
to 33 of the NAF rev. 2 classification (corresponding to the European NACE rev. 2).7
As a firm’s APE may vary across years, we assign each firm a permanent 2-digit sector
based on the most frequent occurrence.®

DADS is then matched to other sources: first, the exhaustive transaction-level in-
ternational trade dataset by the French customs office (Direction Générale des Douanes
et des Droits Indirects, DGDDI), containing detailed information on import and ex-
port flows, among which trade value, country of origin/destination, and an 8-digit
product code, expressed in terms of the European Union’s Combined Nomenclature,
an extension of the international Harmonized System (HS) trade classification. Then,
we retrieve several firm-level variables (notably, physical assets, value added, founda-

6 Establishments can be easily aggregated at the firm-level using their SIRET identification number,

whose first nine digits correspond to the SIREN code.

7 In the data, the APE code is expressed in terms of the NAF rev. 1 classification from 2002 to
2007, and in terms of the NAF rev. 2 classification since 2008. To ensure consistency over the
observed time span, we establish a one-to-one mapping between the 4-digit classes of the NAF rev. 1
classification and those of the NAF rev. 2. To do this, we use the following criterion: if the majority
of firms active in sector A (NAF rev. 1) in 2007 is active in sector B (NAF rev. 2) in 2008, then
we map sector A into sector B. The few remaining ambiguous cases have been solved manually.
In case more than one mode is present, we assign the code referring to the latest year.



tion year) by matching DADS with FICUS and FARE, two confidential datasets, also
provided by INSEE, based on the fiscal statements that all French firms must make to
the tax authorities, which contain detailed balance-sheet and revenue-account data. °

2.2 Definitions

In what follows we explain how we construct the variables used in the analysis, on one
side the gross employment flows (net growth, hiring and separation rates) and on the
other side the automation variable.

2.2.1 Gross worker flows at the firm level

A major contribution of this study concerns the decomposition, at the firm level, of
net employment flows into gross worker flows, in and out of the firm, i.e. hirings
and separations. This is made possible thanks to the use of worker-level data from
the DADS Postes dataset. Each yearly issue of the latter contains information on all
workers that are employed in that year (t), or were employed in the previous year
(t-1); and, for each variable, it reports information at both t and t-1 (coded as missing
in one year if the job is not present in that year). This structure is perfectly suitable
for the identification of gross worker flows, defined by Davis and Haltiwanger (1999,
p. 2717) as «the number of persons who change place of employment or employment
status between t-1 and t».}° Consistently with this definition, we identify a job as a
hiring if it exists at time t but not at t-1; and as a separation if the contrary is true,
i.e. if it exists at t-1 but not at t.!!

Two qualifications should be added in this regard. The first is that we define worker
flows as one-year transitions from December 31 of year t-1 to December 31 of year t.
In other words, we do not count all events that occur during a year, but only compare
the same point in time in two different years. This allows ignoring short-lived jobs and
temporary fluctuations, due e.g. to seasonal dynamics.'? The second qualification is
that we only consider jobs labeled as ‘principal’ (non-annezes) by the INSEE, which
exceed some duration, working-time, and/or salary thresholds.'® These can be seen as
the ‘true’ jobs that contribute to the production process (see e.g. INSEE 2010, p. 17),
and account for the large majority (three-fourths) of total jobs.

Based on these definitions, we construct job-level indicators denoting principal jobs
that are present on December 31 of years t and t-1 (I;; and [, 1, respectively, where
j indexes jobs, defined again as worker-establishment pairs)." We then aggregate

% FARE is the successor of FICUS since 2008 and collects data from a larger set of tax regimes
than FICUS. For details about the matching of FICUS and FARE with DADS, see Domini and
Moschella (2018).

10 Also see Davis and Haltiwanger (1992, p. 833).

1 Notice that the reason for a separation (e.g. retirement, death, ...) is not stated in DADS Postes

12 This approach is followed, among others, by Abowd et al. (1999); Davis et al. (2006); Golan et al.
(2007); Bassanini and Garnero (2013).

13 To be classified as non-annere, a job should last more than 30 days and involve more than 120
worked hours, with more than 1.5 hours worked per day; or the net salary should be more than
three times the monthly minimum salary; else, it is classified as anneze.

14 Although an indicator of presence on December 31 is available in DADS, starting from 2005, we
build our own indicator and employ it in identifying worker flows. We do this for two reasons: the
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this information at the firm level (a firm being identified with subscript i) and obtain
employment stock and flow variables based on these job-level indicators. Emp;, and
Emp,;—; refer to total employment stocks in firm ¢ in years t and t-1, respectively.
A firm’s hirings in year t (H,;) are obtained as the aggregation of jobs for which the
job-level presence indicators are [;; = 1 and [;;—1 = 0; separations in year t (5;;)
are all jobs for which I, = 0 and I;;_; = 1. Continuing employees are such that
I;; = 1 and I,y = 1 and so they will part of firm total employment at both t and
t-1. Net employment change in year t is defined as the difference between the stock
of employment at t and at t-1, and is also equal to the difference between hirings and
separations:

AEmpi,t = Empi,t - Empi,tfl = Hi,t - S’i,t (1)

Following Davis and Haltiwanger (1990, 1992), we express worker flows from t-1
to t as rates, normalizing the worker flows by firm size. To do so, we divide them
by the average of employment in those two years, Z;;, = w The hiring,
separation, and (net) employment growth rates to be used in our empirical analysis

are then obtained as:

L Hiy
T T
it
. = Sit
it =
Ziy
_ AEmp;; b
Git = 7 =Nyt — Sit
it

2.2.2 Types of workers

The above-mentioned variables are constructed both for total firm employment and
separately for different categories of workers within firms. We use different classifica-
tions of workers to identify the heterogeneous impact of technology on worker flows,
namely 1-digit and 2-digit occupational categories, and routine-intensive versus non-
routine intensive tasks (following the classification by Goos et al., 2014).

The first classification follows the structure of the French occupational codes,
namely the Catégorie Socio-professionelle (CS). While this is strictly speaking an
occupational taxonomy, which reflects the hierarchical structure within firms and the
levels of management or ‘production hierarchies’ (see also Caliendo et al., 2015; Guil-
lou and Treibich, 2017), it has also been employed as a measure of jobs’ skill level in
the empirical literature using French data, notably by Abowd et al. (1999), Biscourp
and Kramarz (2007), and Harrigan et al. (2016, 2018). As illustrated in Table 1, we
consider the largest 1-digit and 2-digit CS codes, which account for almost the entirety

first is that the indicator from DADS is not available in the first years of our observation period; the
second is to ensure a time-consistent treatment of the ‘pay shift’ phenomenon (décalage de paie).
This refers to jobs for which working in year t runs from December 1 of year t-1 to November 30
of year t, rather than from January 1 to December 31 of year t. As pointed out by the INSEE
(2010, p. 123, our translation), «the treatment of these pay shifts in DADS has changed over time.
In order to have a period-consistent correction, you may correct just for the jobs with a negative
starting date.»



of workers in the firms of our sample (97-99% in the case of the 1-digit codes, 88-92%
in the case of 2-digit ones). Notice that 2-digit categories 38 (Technical managers and
engineers) and 47 (Technicians) are identified by Harrigan et al., 2016) as ‘techies’, i.e.
workers who facilitate the adoption and use of new technology, and should therefore
receive a particular attention.

Table 1: Occupational categories and their share (%) in employment, 2002-1015.

Average within-firm share Aggregate share

1-digit categories

CS3  Engineers, professionals, and managers 11.03 16.51
CS4 Supervisors and technicians 19.40 22.85
CS5 Clerical workers 12.70 7.44
CS6  Production workers 54.19 52.45
Total 97.33 99.25

2-digit categories

(CS37 Top managers and professionals 4.68 5.38
(CS38 Technical managers and engineers (techies) 6.05 10.95
CS46  Mid-level managers & professionals 7.53 6.53
CS47  Technicians (techies) 7.75 11.76
(CS48  Supervisors and foremen 3.41 4.24
CS54  Office workers 10.23 6.29
(CS62  Skilled industrial workers 26.60 30.35
(CS63  Skilled manual laborers 4.74 1.66
CS67  Unskilled industrial workers 17.04 15.28
Total 88.03 92.45

Notes: (i) values are calculated on our sample (see below) over the entire 2002-2015 period; (ii) shares
do not add to 100 due to the existence of residual categories, not displayed, whose CS codes start by
2, such as artisans and shopkeepers. Source: our elaborations on DADS and DGDDI data.

Furthermore, to compare our results to the literature on job polarization, we match
the French occupational classification to the international one in order to identify
routine-intensive occupations. In order to do so, we use the toolbox developed in
Falcon (2015) which allows to map the French occupational classification (Professions
et Catégories Socio-professionnelles, PCS2003) into the International Standard Clas-
sification of Occupations (ISCO88). Then we use the Routine Task Intensity (RTT)
measure, originally developed by Autor and Dorn (2013) and matched to the European
ISCO classification by Goos et al. (2014), to obtain a RTI measure for each 4-digit
occupation. We classify the set of occupations that are in the top RTI tercile in 2009
as routine task-intensive occupations, following Autor and Dorn (2013). Since the
source includes 4-digit PCS2003 codes starting from 2009, this analysis only applies
to the subperiod 2009-2015.

For the period 2002-2008, the occupational information is less precise: we have
the CS classification, which corresponds to the first 2 digits of the PCS2003. In or-
der to extend the analysis to the whole period, we classify a 2-digit occupation as a
routine task-intensive occupation if the majority of its 4-digits subcategories are rou-
tine task-intensive according to the above criterion. According to this procedure, two
major 2-digits occupations are considered routine intensive: occupational categories
54 (office workers, the largest subcategory of clerical workers) and 67 (unskilled in-
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dustrial workers, the largest subcategory of production workers). In this analysis we
leave category 48 (supervisors) out, as they are difficult to assign to a definite routine
class.!®

2.2.3 Automation

Data on the adoption of digital and automation technologies at the firm level is only
recently starting to be collected by national statistical offices, and is not yet included
in main innovation surveys such as the Community Innovation Survey. Notably, the
Dutch statistical office (CBS) includes a question on automation costs in their national
survey (see Bessen et al., 2019). Instead, trade flows reported by firms to customs
offices are decomposed at a very fine product level (for reasons related to heterogeneous
tariffs). We construct our measure of investment in automation from such product-
level customs data.

We identify imports of capital goods that embed automation technologies based
on their 6-digit Harmonized System (HS) product code, following a taxonomy pre-
sented by Acemoglu and Restrepo (2018). They partition all HS codes referring to
capital goods (divisions 82, 84, 85, 87, and 90) into several categories of automated
and non-automated goods. Imports of capital goods embedding automation technolo-
gies include, among the others, industrial robots, dedicated machinery, numerically-
controlled machines, and a number of other automated capital goods.'® To the cat-
egories from the paper by Acemoglu and Restrepo (2018), we add 3-D printers. In
Section 3 we provide evidence that imports of such capital goods behave in a way
consistent with an investment variable, and in particular they occur in spikes.

Our choice of focusing on imports of automation-intensive goods, driven by data
availability,!” has some limitations, which, however, we expect not to greatly affect
our findings, nor to do so in the more harming direction. First, our analysis does not
capture what happens among firms not involved in international trade: they may well
buy automation technologies from domestic suppliers, and the impact on their em-
ployment dynamics may be different, also because domestic firms tend to be different
from firms involved in international trade, i.e. they tend to be smaller and less pro-
ductive on average. Notice, however, that in the case of France, domestic investments
in automation technologies present a limited impact because, given the production
structure of the French economy, imports are likely to be the most important source
of automation goods. Indeed, France only has a revealed comparative advantage (cf.
Balassa 1965) in the production of robots (see Table A2: the RCAs are larger than
one just in the case of robots, column (1)), which represent less than 3% of the total
imports of automation-intensive goods studied here. Second, firms might in general
resort to an intermediary to purchase goods abroad (there exists a growing literature
on the role of intermediaries in international trade; see Ahn et al., 2011; Bernard

15 The 4-digits subcategories of supervisors are almost evenly splitted among the second and the third
tercile of the employment-weighted distribution of routine task-intensity in 2009. Notice that the
supervisor category represents just a tiny fraction of total employment (around 3.5%).

16 For a full list, including the specific 6-digit HS codes falling under each of the above-mentioned
categories, see Appendix A.

17 Detailed information on the purchase of goods are indeed available only through customs data of
firms’ imports.
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et al., 2010; Blum et al., 2010); however they are much less likely to do so for more
complex goods (Bernard et al., 2015) involving higher relation specificity such as the
ones we are focusing on here. Finally, also some importing firms in our sample might
purchase automation-intensive capital goods only domestically, and thus they may be
wrongly labelled as non-adopters of automation technologies. With respect to this,
again notice that the structure of the French economy makes this possibility quite un-
likely (see Table A2). Moreover, our within-firm identification mostly relies on what
happens within firms that do import automation-intensive capital goods. Firms that
purchase automation goods only domestically are in our control group in the propen-
sity score approach; as such, their misclassification as non-automating firms is likely
to make our estimates at most imprecise on the conservative side. On top of that, we
also performed a robustness check using a sample of firms containing only importers
of automation goods (see Section 4.4). Overall, we think we are able to keep under
control any bias associated to not considering investments in domestically-produced
automated-intensive goods.

2.3 Sample definition and descriptive statistics

Table 2: Sample composition per year, 2002-2015

Year Nb. firms Share in total Share in total
manuf. firms manuf. employment
2002 37,703 31.12 84.40
2003 37,790 31.69 84.87
2004 37,659 32.27 85.17
2005 38,065 33.13 85.21
2006 39,058 33.72 85.35
2007 38,469 33.64 85.25
2008 37,912 33.75 85.32
2009 38,085 33.66 85.05
2010 37,179 34.00 85.33
2011 36,592 34.19 85.34
2012 36,122 34.19 85.42
2013 35,461 34.06 85.30
2014 34,847 33.86 85.07
2015 34,122 33.50 84.73

Source: our elaborations on DADS and DGDDI data.

As we identify automation investment through imports embedding automation
technologies, we restrict our analysis to the sample of firms importing at least once in
the period of analysis. Since one of the main focus of the work is the analysis of the
impact of automation on job flows (both gross and net), we require observations on
firms that are continuing over at least two consecutive years. Continuing firms account
for 91.05% of firms that import at least once between 2002 and 2015.

The yearly composition of the sample thus defined is summarized in Table 2. Notice
that the number of firms decreases over time, which is in line with the manufacturing
sector’s secular decline (see also Domini and Moschella, 2018). Also notice that, in
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Figure 1: Mean net growth rate, hiring rate, and separation rate, 2002-2015. Source: our
elaborations on DADS and DGDDI data.

line with empirical international trade literature (see among others, the review in
Bernard et al., 2012), importing firms in our sample represent a minority (about one
third) of manufacturing firms, but a large majority (around 85%) of their aggregate
employment.

Figure 1 provides some first evidence about the different dynamics of worker flows
at the firm level. The net employment growth rate fluctuates around zero, with a
negative peak in 2009, due to the Great Recession. Indeed, hiring and separation
rates follow a very similar pattern, starting at a level around 0.25 in the beginning of
the period and gradually decreasing to 0.17 at the end of the period. The negative
growth rate around 2009 is explained by a drop in the hiring rate.

Figure 2 compares the mean net and gross rates of the four 1-digit occupational
categories. It clearly emerges that hiring and separation rates decrease, as we climb
the occupational ladder up: indeed, they are lowest for managers and engineers and
highest for clerks and production workers. Common to all categories is the general
decreasing trend in gross rates, which is consistent with what we observed in the
previous figure. In terms of net employment growth, we do not observe clear patterns,
except for the fact that blue collar workers were most hit during the global crisis. What
can we conclude from these statistics? Figure 2 shows a lower turnover rate (lower
hiring and lower separation) among higher management levels. This can be explained
by a higher degree of knowledge tacitness and idiosyncratic skills of such workers. On
the one hand, managers acquire, through experience, specific knowledge about the
firm’s needs. On the other hand, higher skills which match the firm’s operations are
more difficult to find on the labour market. Such matching costs are then reflected in
lower turnover rates among skilled employees. In Section 4.3 we will take into account
the possible heterogeneous dynamics across occupational categories by also estimating
the impact of automation on the share of those different categories.
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Figure 2: Mean net employment growth rate, hiring rate, and separation rate, by occupational
category, 2002-2015. Source: our elaborations on DADS and DGDDI data. Note: CS3
denotes engineers, professionals, and managers; CS4 denotes supervisors and technicians;
CS5 denotes clerical workers; CS6 denotes production workers.
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3 Automation spikes: identification and characteris-
tics

This section describes and characterises investment in automation technologies in the
firm-level data. As detailed above, we proxy automation technology adoption as im-
ports of automation technologies, using the categorisation by Acemoglu and Restrepo
(2018). These goods include industrial robots, numerically controlled machines, au-
tomatic machine tools, and other automatic machines (as defined in section 2) hence
their acquisition can be characterised as investment in tangible assets.

First we consider the sectoral distribution of imports of automation technologies
in order to evaluate the relevance of our variable with respect to the digital economy.
To do so, we use the new digital intensity sector taxonomy, developed by the OECD
(Calvino et al., 2018). The authors use a set of indicators'® to assess heterogeneity
across sectors according to three dimensions: technology (use of digital technology),
human capital (needed to embed them in production) and markets (use of online
sales). Not surprisingly, as shown in Table 3 for a representative year (2007), our
variable measuring imports of automation technologies is aligned with the sectoral
classification: we find that the share of imports in automation technologies relative to
the sector’s share in total employment is lowest in the first digital intensity quartile and
highest in the fourth one. In particular, the share of imports of automation technologies
by the high digital intensity group is twice the sector’s share in employment.

Table 3: Distribution of imports embedding automation technologies and employment by
OECD digital intensive sector taxonomy, 2007

Digital Share in imports Share in Ratio
intensity embedding automation total
quartile technologies (%) employment (%)

(1) (2) (1)/(2)
Low 1.00 11.84 0.08
Medium-low  26.95 41.32 0.65
Medium-high 17.84 20.26 0.88
High 54.21 26.58 2.04

Note: the classification for 2001-2003 is used (see Calvino et al. 2018, Table 3); see Table A3 in the
Appendix for a description of codes. Source: our elaborations on DADS and DGDDI data.

3.1 Investment in automation as spikes

In what follows we show that, similarly to physical investment (Asphjell et al., 2014;
Letterie et al., 2004; Grazzi et al., 2016), imports of capital goods embedding automa-
tion technologies happens in spikes: such an event is both rare across firms and within
firms (cf. Figure 3). Finally, each event represents a significantly high share of total
investment within firms (cf. Figure 4).

18 Indicators are: share of ICT-related tangible and intangible investments; share of purchases of
intermediate ICT goods and services; stock of robots per hundreds of employees; share of ICT
specialists in total employment; and the share of turnover from online sales
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First, it is rare across firms: in each year, around 15% of importers buy goods
from such categories, and 2.5-5% represent spikes.!” As a comparison, around 5-7%
of firms in our sample have a general physical investment spike in a given year.?’
Overall, 38% of firms import automation goods at least once. Although few firms
invest in automation technologies, it may be that we observe ‘repeated’ or ‘continuous’
investment over time in that subgroup. Therefore the second step is to check whether
it is rare within firms, i.e. investing in automated goods doesn’t happen regularly or is
smoothed across periods. Figure 3 shows that the latter is not usually the case. Among
firms who import automated goods at least once, close to 30% does it only once, and
the frequency decreases smoothly with higher values, except for a small group of firms
who import automated goods in all years. A potential concern with the latter group
of firms, which represent approximately 4.3% of the sample, is that they are somewhat
different from other firms. When excluding them from our regression analysis, we find
that in fact they are not driving our main conclusions (results are available from the
authors upon request). We also test whether our results are robust to excluding firms
involved in carry-along trade: notice indeed that 90% of firms that import automation
goods in all years are firms that both import and export automation goods. Results,
shown in the robustness tests section, are again unchanged (See Table B5).

2
1

Fraction

5 10
Mumber of years with automated goods imports

Figure 3: Number of years with imports of automated goods. Source: our elaborations on
DADS and DGDDI data.

The final check is that the event that we want to characterize as a spike represents a

19 The employment represented by firms with an automation spike accounts for approximately double
their share in the number of firms in each year (between 5 and 11% in employment share, to compare
with 2.5-5% of firms.)

20 The value of physical assets is retrieved from the FICUS and FARE dataset (variable IMMOCOR
in the former, immo_ corp in the latter). Physical investment is computed as increases in physical
capital (deflated employing the 2-digit sector deflators); the investment rate is the ratio with the
lagged value of physical capital. Although several investment spike measures have been put forward
in the literature (Power, 1998; Cooper et al., 1999; Letterie et al., 2004; Grazzi et al., 2016), we
use the simplest one, defining as a spike the largest investment event within a firm time series, and
with an investment ratio above 0.2, in the spirit of Cooper et al. (1999).
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very high share of total investment within firms. Therefore we study whether, among
firms showing repeated investment in automated goods, the different events are all
similar in nature or, on the contrary, they are much concentrated. To answer this
question, we compute, for each firm, the share of automated imports in year ¢ over the
cumulative sum of automated imports of that firm over the whole period of analysis.
As a comparison, we do the same for investment in physical capital. For each firm we
then rank these yearly shares from largest to lowest. Figure 4 (left) shows that in the
case of physical investment, the average across firms of the largest episode represents
close to 60% of total investment (the median is a bit lower); for automated goods,
the concentration of investment in a single year is even more pronounced and close to
70%.2! The shares of lower ranks then rapidly decrease in value, and even more so
in the case of automated goods.?? Because of the very skewed nature of the variable
within firms, we define as automation spike only the largest event for each firm.

(a) Total physical investment (b) Investment in imported automated goods

o o

1 23 4 4 [ g g 10 11 12 13 14 1 23 4 4 [ g 9 10 11 12 13 14
[ ean Mecian [ ean Median

Figure 4: Investment shares by rank. Rank 1 is the highest yearly investment share in the
firm’s timeline. Source: our elaborations on DADS, DGDDI, FICUS, and FARE data.

What makes automation adoption lumpy? We put forward two explanations. First,
our automation variable is a tangible investment variable: the products we have se-
lected are a subset of capital goods that are automated in nature. As investments, they
should share similar features as the larger category of physical investment goods, pre-
viously identified in the literature (Nilsen and Schiantarelli, 2003). Second, even when
considering other dimensions of the adoption of automation technologies which are not
strictly related to investments (i.e. automation costs), Bessen et al. (2019) also point
out that those share the same characteristics that make investment lumpy:23 they are

21 Such evidence on the concentration of investment in few events over the observation period is in line
with previous literature (see among the others Doms and Dunne, 1998; Nilsen and Schiantarelli,
2003; Grazzi et al., 2016). In order to maximize the number of observations, the plot in Figure 4
is performed on the main unbalanced sample as per Table 2. Note, however, that restricting to the
balanced sample provides very similar results.

22Tn the case of physical investment, smaller shares, corresponding to higher ranks, are typically
associated to maintenance investment, therefore to be separate from the acquisition of additional
or new machines.

23 See Bessen et al. (2019, p. 10).
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irreversible, as they imply idiosyncratic changes in the production process and com-
plementarities with workers’ tasks, and indivisible, since they cannot be carried out
in small chunks over time (as would be instead for example worker training, involving
few employees at a time).

3.2 Automation vs. physical investment spikes

The previous exercises confirm that our variable of interest identifies important single
events at the firm-level. From this we may expect that the impact of imports of
automation technologies on employment may share similar traits with that of general
capital investment. In particular, are automation and investment spikes happening
jointly? If they were, this could pose problems of identification of the relation between
automation spikes and employment flows. We find that they are not: in our sample,
only 8.27% of automation spikes are also investment spikes, while 4.60% of investment
spikes are also automation spikes. Further, the correspondence between an automation
spike and leads or lags of an investment spike is even lower than that (below 3%). One
reason why we don’t find a joint occurrence of the two types of spike is their different
relation to the business cycle. Investment spikes have been found to be more clustered
in periods of booms, as firms delay their investment projects in more uncertain times
with low demand (Gourio and Kashyap, 2007). Instead, our automation spikes are
quite evenly distributed over time, with the exception of a drop in 2009 due to the
general decrease in imports; therefore we could characterise them as rather acyclical.

3.3 Automation spikes and employment: preliminary evidence

In what follows we are interested in the relation between employment dynamics and
automation investment spikes. The investment literature has also investigated the
impact of spikes on employment. From a theoretical perspective, and similar to the
ongoing debate on the impact of automation technologies on employment, capital
can be seen as a possible substitute for labour. Yet, empirical results show that in
most cases we observe interrelation between (physical) investment and employment
spikes: firms increase their employment level simultaneously with an increase in capital
(Asphjell et al., 2014; Letterie et al., 2004). In particular, using similar data on French
manufacturing firms, Grazzi et al. (2016) show that investment spikes are positively
associated with employment growth. Note however that this literature only considers
net employment growth, not gross worker flows.

Table 4 gives a first insight into the unconditional relation between automation
spikes and gross worker flows. It considers a subsample of firms with an automation
spike, and for which we observe employment growth two years before and two years
after the event. We observe positive net employment growth before and during the
spike, and negative after. This sign reversal after the spike appears to be due to a
drop in the hiring rate, while the separation rate is rather stable.

Notice that the descriptive evidence in Table 4 is already quite revealing of the
insights offered by the analysis of gross flows: a relatively modest change in net em-
ployment around a spike is actually hiding richer dynamics of hiring and separation
rates.
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Table 4: Mean worker flow rates around an automation spike.

Years Net growth Hiring Separation  Nb. firms
since spike rate rate rate
-2 0.021 0.196 0.175 9,149
-1 0.016 0.186 0.170 9,149
0 0.016 0.177 0.161 9,149
1 -0.011 0.152 0.162 9,149
2 -0.037 0.134 0.171 9,149

Source: our elaborations on DADS and DGDDI data. Note: The sample includes firms observed for
at least two years before and after an automation spike.

4 Automation and worker flows

After Table 4 provided some first evidence of an association between automation spikes
and employment dynamics, in this section we assess this relationship more in detail.
We will first use a simple fixed-effects regression framework to assess the changes in
gross and net employment flows around an automation spike, relative to the firm’s
average. Yet, as discussed in the Introduction, there can be important differences in
the performance and characteristics between firms engaging in automation and firms
that never do. In order to control for such selection effects in a more consistent way,
we add in a second step a propensity score reweighting estimator.

4.1 Fixed-Effects regression

In our first exercise, we run a Fixed-Effects (FE) estimation of the following equation
on our sample of firms that import at least once:

2
Flow;; = o + Z BrSpikeiry + i + 01 + € (2)
k=—2

where Flow € {g,h,s} (i.e. it can be the net growth, hiring, or separation rate),
dummies Spike; ) identify whether firm ¢ has experienced an automation spike in a
five-year window, centered around year ¢, «; is a firm fixed-effect, and d;; is a sector-
year fixed-effect (where j is the NAF division firm i belongs to; see Section 2 for details
on this attribution).

In Table 5 we report results from the estimation of Equation 2.2* A clear tempo-
ral pattern emerges: the association between investment in automation and net firm
growth is positive and significant before and during a spike (i.e. from t-2 to t); nega-
tive, but small and hardly significant, in the year after the spike (t+1); and negative
and significant two years after the event (t+2). The net growth rate peaks in the
spike year, when a firm experiences, on average, a growth rate of 3.4 percent points
higher than its within-firm average. In other words, the net growth rate is above its
within-firm average before and during an automation spike, and below it afterwards.

24 Note that these results do not change when we run the fixed-effect regression on the sample of
firms having a propensity score (443,577 observations, see Section 4.2).

18



Table 5: Automation spikes and worker flows. Fixed-effects estimation.

Dep. var.: Net growth Hiring Separation
rate rate rate
Spike;_o 0.021%** 0.000 -0.021%%*
0.002 0.002 0.002
Spike;_1 0.032%** 0.007*** -0.025%%*
0.002 0.002 0.002
Spike; 0.034%** 0.011%** -0.023%%*
0.002 0.002 0.002
Spike; 1 -0.004* -0.006*** -0.001
0.003 0.002 0.002
Spiket o -0.014%** -0.012%** 0.002
0.003 0.002 0.002
Nb. obs. 519,064 519,064 519,064
Nb. firms 54,311 54,311 54,311
Adj. R? 0.072 0.223 0.177

Notes: FE estimation of Equation 2. Coefficients on the sector-year dummies and the constant
term are omitted. *, ** and *** denote p<0.10, p<0.05 and p<0.01, respectively (based on robust
standard errors, clustered at the firm level and displayed below coefficients).

This is in line with what we know from the literature on investment spikes, pointing
out a co-occurrence of the latter with employment spikes.

Deeper insights on how this pattern emerges are provided by the other two columns
of the table. The above-average net growth rate before and during the spike are mainly
accounted for by the separation rates being significantly below its within-firm average;
but above-average hiring rates are also observed, especially in the spike year. Instead,
after the spike, the decrease in the net growth rate is solely driven by a decrease in
the hiring rate.

4.2 Propensity score weighting

Results from Table 5 show that automation spikes are correlated, within firms, with
employment dynamics at different time lags. However our simple fixed-effects identi-
fication does not allow us to interpret the coefficient in a causal way. In particular,
the positive correlation between automation spikes and employment growth can be
due to some form of endogeneity of the automation decision with respect to the em-
ployment performance. Indeed, within our sample of importing firms, importers of
automation goods display larger values than non-importers of automation in terms of:
employment, productivity, capital intensity, export intensity, age and share of high-
skill workers (see Table A4). Previous positive performance can in turn provide the
firms with the resources and the incentive to automate.

In order to mitigate the issue related to a non-random selection of firms into au-
tomation, we follow Guadalupe et al. (2012) and Koch et al. (2019) and combine a
fixed-effect approach with a propensity score reweighting estimator. This reweighing
will account for differences in firms’ probability to automate, based on lagged perfor-
mance indicators.

To calculate the propensity scores, we first separate firms of our sample into seven
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manufacturing industry groups.?> The binary outcome we are interested in is the

occurrence of an automation spike by firm i in year ¢ (Spike;; = 1, automation spike)
or not (Spike;; = 0, no automation spike). Following Guadalupe et al. (2012), the
decision to automate can be viewed as the reflection of a latent (unobserved) variable
S}, so that Spikey =11if S;; > 0and S; =01if S}, <O0.

For each industry s, we estimate the probability (p) of observing an automation
spike in firm 7 at time ¢, in the following pooled probit regression:

Spikey = a + 1 X1+ PoXiy—o + 7 + €i (3)

where X is a vector of variables including employment level, net employment growth,
hourly labour productivity level, hourly labour productivity growth, capital intensity,
share of the CS3 1-digit occupational category (engineers, professionals, and man-
agers), import and export status, and age.? ~; are year dummy variables and ¢ is
the error term. Those variables closely match the ones used by Guadalupe et al. (2012)
and Koch et al. (2019) and should control for the relevant observable differences in
performance among firms. We find that all these variables have a positive impact on
the probability to automate.

We then use the propensity scores obtained from the probit regressions to construct
firm-specific weights: each automating (treated) firm will get weight equal to 1/p, and
each non-automating (control) firm will get weight equal to 1/(1 — p), where p is the
estimated propensity score. Note that not all treated firms can be matched with the
propensity score kernel matching, as we exclude firms that are not in the common
support of the propensity score distribution. As a consequence, the different steps of
the propensity score approach reduce the sample from 519,064 (see Table 5) to 443,577
observations. Finally, we re-estimate equation (2) using these weights.

Results from the propensity score reweighting estimation are presented in Table 6.2
Automation spikes are not correlated anymore with previous net employment growth
rates®®: this means that our matching strategy is able to control for observable and
unobservable differences among firms that affect pre-spike growth rates. Conditional
on this, we still find a strong contemporaneous relationship between automation spikes
and net employment growth rates: in the year of their automation spike, firms do enjoy
a net growth rate higher than their average by 2.9 percent points, which is jointly due
to a higher hiring rate (1.1) and lower separation rate (1.7). After the spike, the
coefficient on the net growth rate tends to decrease and is negative one year after

%5 The groups combine the following 2-digit NAF sectors: [10-12], [13-15], [16-18], [19-23], [24-25],
[26-30] [31-33]. The aggregation of sectors serves to have a sufficient number of spikes per group,
while preserving some homogeneity of activity within each group.

26 Hourly labour productivity is calculated as the ratio between value added (deflated using 2-digit
deflators) and the total number of worked hours; capital intensity is the ratio between the value
of physical assets (deflated using 2-digit deflators) and the total number of worked hours. Notice
that age (defined as years since foundation) is not lagged, due to its incremental nature.

2T As mentioned above, the number of observations is lower than in Table 5. We checked that
differences in results are not driven by the different sample (results are available upon request).
We also checked that observed characteristics of automating and non-automating firms are balanced
in all industries.

28 There is only a small and barely significant correlation two years before the spike, which is due
to lower separation rates. This residual effect however disappears in most robustness checks we
perform.
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Table 6: Automation spikes and worker flows: propensity score reweighting estimator

Dep. var.: Net growth Hiring Separation
rate rate rate
Spike;_o 0.009* -0.000 -0.009*
0.005 0.005 0.005
Spike;_1 -0.005 -0.005 -0.000
0.005 0.005 0.005
Spike; 0.029%** 0.011** -0.017%%*
0.005 0.005 0.005
Spike; 1 -0.011%* -0.007 0.005
0.005 0.005 0.005
Spiket o -0.014%* -0.006 0.008
0.006 0.005 0.006
Nb. obs. 443,577 443,577 443,577
Nb. firms 40,247 40,247 40, 247
Adj. R? 0.005 0.191 0.126

Notes: Propensity score reweighting estimation of Equation 2. Coefficients on the sector-year dum-
mies and the constant term are omitted. *, ** and *** denote p<0.10, p<0.05 and p<0.01, respec-
tively (based on robust standard errors, clustered at the firm level and displayed below coefficients).

the spike, and negative but barely significant two years after. Taking into account
the compound effect, two years after the spike, automating firms are still larger than
before the event. Overall, the decision to automate is therefore positively associated
with firms’ own employment levels.

4.3 Analysis by type of worker

As discussed in the introduction, one crucial dimension to consider when analyzing the
joint impact of trade and technology on employment dynamics is the skill composition
of the firm workforce. From economic theory, differences across types of workers may
emerge if investment in automation is associated to skill-biased technical change, i.e.
skill-complementarity between the machines and the workers needed to operate them
(Autor et al., 2003). The alternative hypothesis is that the new wave of innovations
may affect either all workers, or may have heterogeneous effects but not along the ‘tra-
ditional” skill categorisations. In particular, the routine-task content of a job may be
seen as the relevant variable, determining the impact of automation on employment.
We take this dimension into account, first, by running the regressions for the occupa-
tional categories presented in Section 2; then, by doing the same for a routine-intensity
classification.

An important aspect of these theories is that the adoption of new technology should
affect the relative demand for skills within firms, in the form of the share of each
worker category within the firm. To better assess the relation between automation
and the composition of the labour force, we estimate the following equation, using the
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propensity score reweighting approach described in section 4.2 :

2
Sharej, = o + Z BrSpikeiry + v + 0t + € (4)
k=—2
where Share® is the share of occupational category ¢ with respect to the total employ-
ment of firm ¢, and the right-hand side variables are as per Equation 2. As discussed
in Section 2, our data does not reflect skill categories per se. We consider four 1-digit
categories (Engineers, professionals and managers; Supervisors and technicians; Cleri-
cal workers; Production workers) and nine 2-digit categories, among which a particular
attention should be devoted to categories 38 and 47, identified as ‘techies’ by Harrigan
et al. (2016).%

Table 7: Automation spikes and 1-digit occupational categories’ shares.

Dep. var.: CS3 CS4 CS5 CS6
Share of Engineers, Supervisors Clerical Production
professionals, and workers workers
and managers technicians
Spike;_o -0.002 0.001 -0.002 0.002
0.003 0.004 0.003 0.004
Spike;_; -0.002 0.004 -0.002 -0.000
0.002 0.004 0.003 0.004
Spike; 0.000 -0.001 -0.002 0.004
0.003 0.004 0.003 0.004
Spike; 11 0.002 0.005 -0.003 -0.003
0.003 0.004 0.003 0.004
Spikes o -0.001 0.002 -0.001 0.000
0.003 0.004 0.003 0.004
Nb. obs. 443,577 443,577 443,577 443,577
Nb. firms 40,247 40,247 40,247 40,247
Adj. R? 0.548 0.532 0.553 0.686

Notes: Propensity score reweighting estimation of Equation 4. Coefficients on the sector-year dum-
mies and the constant term are omitted. *, ** and *** denote p<0.10, p<0.05 and p<0.01, respec-
tively (based on robust standard errors, clustered at the firm level and displayed below coefficients).

Results considering 1-digit and 2-digit occupational categories are provided in Ta-
bles 7 and 8, respectively. Practically none of the coefficients in both tables is statisti-
cally significant (the only two that are, are barely so). Therefore, an automation spike

29 We remind the reader here that the groups with lowest skills, as also reflected in a wage distribution
close to the minimum wage threshold, includes low-skilled white-collar workers (Clerical workers)
and the unskilled production workers. The distinction between skilled and unskilled blue-collar
workers is described in Biscourp and Kramarz (2007), who also point out that the distinction
between the two categories is especially relevant if the aim is to assess their relative vulnerability to
being substituted due to technological change: «The French classification of occupations identifies
unskilled blue-collar workers as ‘those whose job requires little specific training.” They embody
little specific human capital and should be more easily substitutable by foreign ‘low-wage’ blue-
collar workers than their skilled counterparts. According to the skill biased technical change view,
however, they should also be the most vulnerable to substitution by technology-intensive equipment
and associated organizational change.» (Biscourp and Kramarz, 2007, p. 38).
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Table 8: Automation spikes and 2-digit occupational categories’ shares.

Dep. var.: CS37 CS38 CS46 CS47 CS48 CS54 CS62 CS63 CSe67
Share of

Spike;_» -0.000  -0.002  0.000  0.001  -0.001 -0.002 -0.001  -0.001  0.002
0.002  0.002  0.002  0.002  0.001  0.003  0.004 0002  0.004
Spike;_; -0.001  -0.001  0.000  0.004  0.000 -0.001 -0.007* -0.001  0.006
0.002  0.002  0.003  0.003 0001 0003  0.004  0.002  0.004
Spike; 0.001  0.002  -0.000 0.0l  -0.000 -0.001  0.003  -0.003  0.003
0.002  0.002  0.002  0.002  0.001  0.003  0.004  0.002  0.004
Spikey41 -0.001  0.003  0.003 0002 000l -0.001 -0.002 -0.002  0.003
0.002  0.002  0.003  0.003  0.002  0.003  0.005 0.002  0.004
Spike; o -0.002  0.001  0.001 -0.002 0.002 0.0l -0.005  0.000  0.007*
0.002  0.002  0.002  0.003  0.002 0003  0.004  0.002  0.004
Nb. obs. 443,577 443577 443,577 443,577 443,577 443577 443577 443,577 443,577
Nb. firms 40,247 40,247 40,247 40,247 40,247 40,247 40,247 40,247 40,247
Adj. R? 0.399 0491 0489 0561  0.345 0530  0.564  0.520  0.526

Notes: Propensity score reweighting estimation of Equation 4. CS37: Top managers and professionals;
(CS38: Technical managers and engineers; CS46: Mid-level managers & professionals; CS47: Techni-
cians; CS48: Supervisors and foremen; CS54: Office workers; CS62: Skilled industrial workers; CS63:
Skilled manual laborers; CS67: Unskilled industrial workers. Coefficients on the sector-year dummies
and the constant term are omitted. *, ** and *** denote p<0.10, p<0.05 and p<0.01, respectively
(based on robust standard errors, clustered at the firm level and displayed below coefficients).

does not seem to be associated to a change in the skill composition of firms — neither at
a more nor at a less disaggregated level. Remarkably, not even the 2-digit categories 38
(Technical managers and engineer) and 47 (Technicians), which are labelled ‘techies’
by Harrigan et al. (2016) as they are workers who facilitate the adoption and use of
new technology, are an exception to this general pattern. These results therefore do
not confirm that automation spikes operate following the expectations from the skill-
biased technical change theory, at least according to the classification of workers we
have tested here.

A large literature has emphasized that technological change may be biased toward
replacing labour in routine tasks, the so-called routine-biased technological change
(RBTC) hypothesis (see, among the many others, Autor et al., 2003; Autor and Dorn,
2013; Goos et al., 2014). The previous analysis by occupational category already bears
some implications in terms of routine-task intensity (RTI) of occupations. Consider,
for example, the result on unskilled industrial workers in Table 8: there is probably
little doubt that most of these workers do routine manual work, which are supposedly
most threatened by automation technologies (see, for example, Harrigan et al. 2018).

In what follows we go more in detail in this direction by investigating the rela-
tionship between employment growth and automation spikes taking into account the
routine task-intensity of occupations. Using the definition of routine task-intensive oc-
cupations introduced in Section 2, we construct a new dependent variable as the share
of routine-intensive employees, and then we estimate Equation 4 using the propensity
score reweighting approach. We use two specifications, in order to exploit the available
information fully. We first run the analysis on the whole period (2002-2015), using
the more aggregated occupational classification. We then repeat the analysis on the
subperiod 2009-2015, for which we can use more precise and disaggregated informa-
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Table 9: Automation spikes and routine-intensive category’s share

Dep. var.: Share of Routine-intensive workers

Period: 2002-2015 2009-2015
Spike; o -0.001 -0.003
(0.004) (0.006)
Spike;_1 0.005 -0.004
(0.004) (0.006)
Spike; 0.001 -0.004
(0.004) (0.005)
Spike; 1 0.002 0.002
(0.005) (0.005)
Spike; o 0.008* 0.005
(0.005) (0.005)
Nb. Obs. 441,139 218,493
Nb. firms 40,218 36,215
Adjusted R? 0.517 0.766

Notes: Propensity score reweighting estimation of Equation 4. Coefficients on the sector-year dum-
mies. *, ** and *** denote p<0.10, p<0.05 and p<0.01, respectively (based on robust standard
errors, clustered at the firm level and displayed below coefficients). Observations in Column 1 are
slightly less than in other tables as we leave out firms with only supervisors’ category (see Sec-
tion 2.2.2). Column 2 reports results for the subperiod 2009-2015 in which the routine task-intensity
is measured at the 4-digits level.

tion. In the first case, we are effectively assigning ‘clerical workers’ (54) and ‘unskilled
industrial workers’ (67), which in the previous analysis were into two different oc-
cupational categories, to the same ‘Routine-intensive’ category, while all the others
are classified as ‘Non routine-intensive’. In the 2009-2015 subperiod regressions, we
exploit the 4-digits PCS2003 classification to take into account the heterogeneity in
routine task-intensity that exists within the same broad occupational category. So,
for example, some unskilled industrial workers will be assigned to the ‘Non-routine’
category.

Regressions results are reported in Table 9. Results obtained for the whole period
show a slight but barely significant increase in the share of routine-intensive occu-
pations two years after the spike, which is in line with the increase in the share of
unskilled industrial workers observed in Table 8. However, results subperiod 2009-
2015, where the routine task-intensity is measured in a more precise way, do not show
any significant change (column 2).

We summarize the main results of the whole section. Automation spikes share
the known features of investment spikes in general (Asphjell et al., 2014): they are
associated with a contemporaneous expansion of employment. More precisely, the
positive coefficient in the net employment growth regression is explained both by a
reduction in the separation rate and by an increase in the hiring rate. This expansion
is found to be generalised across occupational and routine-intensive categories.
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4.4 Robustness checks

We ran a number of checks to verify the robustness of the results presented above. In
the interest of space, we comment here the results and refer to Appendix B for the
related tables. All the robustness checks have been performed, unless stated differently,
using the propensity-score reweighting estimator for Equation 2.

Discontinuity in data collection

First of all, a potential drawback in the use of occupational categories arises from a
discontinuity in the source regarding the coding of the underlying variable (CS) in
year 2009, as a consequence of which there is an increase in clerks and a decrease in
supervisors and technicians (INSEE, 2010, pp. 58-59), as well as a shift from skilled to
unskilled production workers. To verify that the findings as per Subsection 4.3 are not
affected by this discontinuity, in Appendix B we present the results of regressions by
occupational category, separately run for the two subperiods 2002-2008 and 2009-2015,
i.e. before and after the discontinuity year.*°

Results from Table B1 replicate the non-significance picture from the whole-period
regressions (Table 7) in both subperiods. Likewise, Table B2 is also largely consistent
with Table 8, though showing limited significant dynamics, involving specific 2-digit
categories, that are different across subperiods. Notably, in the earlier subperiod
(2002-2008), the two ‘techies’ categories, 38 (Technical managers and engineers) and
47 (Technicians), respectively display a significant positive coefficient in the year of
the spike, and a negative one two years after the spike. This may reflect a switch
toward higher-level technical figures, when conducting investment in automation. This
feature, however, disappears in the regression on the later subperiod (2009-2015).

Firm size

A second issue is related to firm size: as shown in Table A4 in Appendix A, large
firms have a higher probability to automate. This may be due to lower financial
constraints, which are known to matter for investment in general (Kadapakkam et al.,
1998; Audretsch and Elston, 2002), but also because of heterogeneous gains from
automation.

In Table B3 we address this issue, running Equation 2 on a restricted sample that
excludes firms with less than 50 employees, thus reducing the number of observations
from 443,577 (40,247 firms) to 81,202 (6,851 firms). This threshold is chosen because
it is one of the criteria used for defining medium and large firms by Eurostat, and
because it is an important threshold in the French labour market, at which many

30 This is also useful, as these two subperiods differ in terms of the general macroeconomic context:
indeed, starting in the last quarter of 2008, the Great Recession, with the related trade collapse
and credit crunch, severely hit the French economy, as well as the European and World economies.
As a result, while the 2002-2008 subperiod was overall a period of growth, 2009-2015 was instead
largely a time of economic stagnation and uncertainty, with particularly negative consequences
for firms involved in international trade and innovative activities (see also the analysis in Domini
and Moschella, 2018). Finally, the two subperiods may differ due to developments in automation
technologies, modifying the benefits and costs from automation, and therefore the incentives for
investment and the latter’s consequences on employment.
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labour-related regulations start to be binding (which has consequences on employment
and productivity, as documented by Garicano et al. 2016).

The results show important differences with respect to the overall sample: in Ta-
ble B3, the contemporaneous relation between employment growth and automation
spikes shows a higher positive coefficient (0.049 compared to 0.029 in the overall sam-
ple). This is mainly due to a higher hiring rate (0.035 instead of 0.011), while the
coefficient on the separation rate is slightly lower (-0.014 to be compared with -0.017).
This is consistent with large firms having stricter firing rules so that, compared to
their average, gains from automation mostly come from the hiring side.

Size also matters when considering the organization of work across or within plants
of the same firm. The labor-saving effect of automation should indeed be observed
more accurately within a single plant; while changes in labour demand across plants
of the same firm might be instead due to the (indirect) firm-level productivity and
competitiveness effect of automation. We could not conduct our analysis at the plant
level since some data sources (customs data, balance sheet data) only provide firm-
level information. However, we can isolate single-plant firms, in which within-plant
and within-firm effects overlap. In our sample, single plant firms represent around
80% in terms of the number of firms and, given their smaller size, account for around
40% of employment. Results in Table B4 are overall in tune with the main analysis
reported in the paper: in the year of the automation spike we observe a positive effect
on net employment growth, while the following two years we detect a negative effect.
Yet, also notice that contrary to the full sample, now the compound effect is negative.
This suggests that it is especially the category of large, multi-plant enterprises that
is responsible to generate a positive net employment growth, following an automation
spike (see also the previous robustness check). Taken together, these two additional
exercises call for a deeper investigation of the two mechanisms at play within plants
and firms (the labour-saving vs. he productivity effects of automation). Data on
automation investments at plant-level would allow to disentangle these two channels,
which is left for future work based on alternative sources.

Controlling for Carry-Along Trade

Our analysis builds on the premises that the automation-investment products imported
by firms are also used and adopted in the production process of those firms. However,
it is also possible that some of the manufacturing firms in our sample are engaged in re-
exporting activities of such automation intensive goods, thus generating a phenomenon
very similar to Carry Along Trade (CAT), i.e. trade generated by manufacturing
firms exporting products not produced by themselves (Bernard et al., 2019). This
would bias (downward) our analysis of the relation between automation adoption and
employment growth. In principle, information on both production and exports at the
product-level are needed to correctly identify carry-along firms, in order to separate
pure re-exporters (non-users) from users that also re-export. Short of that, we make a
conservative approximation by excluding firms that are involved both in the import and
in the export of automation goods (even in different years). Results shown in Table B5
are in line with the main propensity score-weighted regressions as per Table 6, the only
difference being the loss of significance of the coefficient on the spike’s t + 2 lead in
the growth-rate regression, and of the spike in the hiring-rate variable.
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Controlling for investment spikes in other tangible assets

Section 3.2 discusses the limited overlap between investment and automation spikes
(i.e. below 10%). Positive employment effects of physical investment spikes have
been shown by several studies, for example Letterie et al. (2004) and Asphjell et al.
(2014). In the (limited) cases whereby automation and physical investment spikes do
overlap, the employment effects of the latter could be attributed to the former. We
present below a robustness check in which we control for ‘physical investment spikes’.
Results in Table B6 confirm that those spikes do have employment effects, but also
that automation spikes have an independent employment effect, meaning that adding
such a control does not alter our results.

Alternative definition of automation spike

The employment effects of automation spikes have been documented by Bessen et al.
(2019), based on Dutch worker-level data. In what follows, we perform two exercises in
order to enhance comparability of our results with theirs: i) we adopt their definition
of an automation spike using a relative size threshold instead of the highest rank and
ii) we perform the analysis only on the subsample of firms with an automation spike.

Bessen et al. (2019) identify automation spikes in a year ¢ if automation costs are at
least thrice the average firm-level cost share. We adjust the definition to our setup.3!
Table 10 below shows the distribution of the ratio between the value of automated
investments in the year of the spike and the average value in all the other years. It
shows that less than 25% of our spikes would be discarded if the threshold & la Bessen
et al. (2019) were to be applied. Table B7 then reports the results of our baseline
regression when restricting the automation spikes to those with a value of the ratio
above 3; again our results are confirmed.

Table 10: Distribution of the ratio between the value of automated investments in the year
of the spike and the average value in all the other years in the year of the spike.

Percentile  Value

5 2.14
10 2.46
25 3.51
50 6.19
75 15.04
90 52.69
95 130.98

Source: our elaborations based on DGDDI data.

The second exercise restricts the sample to only include firms that import capital
goods embedding automation technologies in at least one year, i.e. firms with an
automation spike. In fact, our baseline sample is defined as all firms that import
(any good) in at least one year, of which some may never import automated goods.

31 Tn terms of other physical investment, automation spikes represent in the median 26% of physical
investment in the same year, again with the largest spikes (top quartile) representing more than
95% of the yearly physical investment.
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Although the difference between the two groups is captured by the propensity score,
it may be that firms without spikes are generally different from those with a spike,
and follow different growth trajectories. Table B8 shows the results from regressions
run on the restricted sample of firms with an automation spike. Despite the sample
being much smaller, estimates are congruent with those from the baseline regressions
(Table 6).

5 Conclusions

Although there is a certain agreement in acknowledging the impact of technological
change, and in particular of the emerging digital technological paradigms, on employ-
ment, empirical evidence at the micro level is almost missing. Relying on exhaustive
and detailed employer-employee and customs data on French manufacturing firms over
the period 2002-2015, we investigate the relationship between automation via imports
of capital goods embedding automation technologies and worker flows. We delve deep
into this relationship, analysing it for various types of workers, and separating the
contributions to it of within-firm hiring and separation rates.

First we characterise the decision to automate as one that happens in spikes. In
line with Bessen et al. (2019), this supports the idea that automation represents a
significant disruption in the way firms produce. We then find evidence that automa-
tion spikes are positively correlated with preceding and contemporaneous growth in
employment. Accounting for endogenous selection of firms into automation, we show
that, in fact, automation spikes generate a positive contemporaneous effect on net
employment growth, which then declines but leave firms larger than before two years
after the spike. This positive effect can be attributed to both a higher hiring rate
and a lower separation rate. Moreover, the relationship between automation spikes
and worker flows doesn’t seem to change across different types of workers (1-digit and
2-digit occupational categories, and routine-intensive vs. non routine-intensive).

Overall, the impact of automation on firm employment within firms is generally
positive: such result is, on the one hand, in tune with the evidence on investment in
capital goods, irrespective of their technological content (Grazzi et al., 2016), and, on
the other hand, it is consistent with labor-friendly technological change improving the
relative competitiveness of firms and thus favouring their expansion (Barbieri et al.,
2019).

These findings are also in line with what has been found for more specialized forms
of automation, like the effects of ICT adoption in Harrigan et al. (2018) and robot
adoption in Koch et al. (2019) and Acemoglu et al. (2020). Notice that labor-friendly
results at the firm-level do not imply per se that automation is not displacing labor
at a more aggregate level (on this, see Acemoglu et al., 2020, who find that negative
externalities at the market level can overcome positive effects of robotisation at the
firm level).

Zooming in on the within-occupational changes, our results do not seem to support,
in general, the routine-biased technical change hypothesis and the implied polarized
effects of automation technologies on employment. Our results suggest, on the one
hand, that job polarization may be a less pervasive phenomenon than usually thought
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(Hunt and Nunn, 2019); and on the other hand that the positive effects of automation
and, more in general, of technological change, may also spill over unskilled workers
(Aghion et al., 2018, 2019).

The results from our study, as well as from the related literature on micro-effects
of automation adoption, challenge the widespread fear that automation represents a
fatal threat to employment. In fact, an implication for policy-makers, coming from
our findings, is that they should reap the opportunities associated with new technolo-
gies, by sustaining firms’ technological upgrading efforts, which appear to boost firm
employment growth evenly across different types of workers. The mixed record of evi-
dence in the aggregate-level empirical literature requires policy-makers to ensure that
technological upgrading is as widespread as possible, so that automation technologies
do not contribute to further reinforce market power and concentration (see among the
others De Ridder, 2019).

Our analysis is one of the first attempts to explore the determinants of firm-level
gross worker flows, and to look at the impact of automation at the firm-level. There
are, of course, some limitations to our work: our employer-employee dataset does not
allow us to follow the career paths of workers, which can be a relevant margin of ad-
justment following technological change (where do displaced workers get hired after
an automation spike?). Our methodology also limits the analysis to firms engaged in
international trade, leaving aside smaller firms that are solely active in the domestic
market. On the positive side, we think there are important future lines of research
stemming from our work. One possibility, using additional data on the boundaries of
the firms and FDI, would be to focus on the reorganisation of production of multina-
tional firms, as a consequence of automation spikes. Second, with plant-level data or
case studies, one could follow better the changes in the production process associated
with automation, and disentangle the labor-saving from the productivity channels.
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A Additional information

Table Al: Product classes referring to capital goods related to the automation of blue-collar
industrial jobs, based on the taxonomy by Acemoglu and Restrepo (2018), and average share
in total automation investment imports in our sample.

Label HS codes Share (%)
1. Industrial robots 847950 2.72
2. Dedicated machinery 847989 13.69
3. Numerically controlled machines 84563011, 84563019, 84573010, 845811, 6.96

845891, 845921, 845931, 84594010,
845951, 845961, 846011, 846021,
846031, 84604010, 84613010, 84614011,
84614031, 84614071, 84621010, 846221,
846231, 846241, 84629120, 84629920

4. Automatic machine tools 845600-846699, 846820-846899, 851511- 32.60
851519 (excluding the 8-digit codes
listed in Numerically controlled ma-

chines)
5. Automatic welding machines 851521, 851531, 851580, 851590 4.50
6. Weaving and knitting machines 844600-844699 and 844700-844799 0.99
7. Other textile dedicated machinery 844400-845399 0.40
8. Automatic conveyors 842831-842839 3.62
9. Automatic regulating instruments  903200-903299 32.84
10. 3-D printers 84778099 1.69

Notes: (i) for further details, see Acemoglu and Restrepo (2018, A-12-A14); (ii) the mentioned source
does not list the codes referring to Numerically controlled machines, which have been retrieved by
the authors of this paper; (iii) we have added 3-D printers to the original classification by Acemoglu
and Restrepo (2018).

35



Table A2: Revealed Comparative Advantages for the automation measure and its components
(referring to the categories described in Table A1), 2003-2015

Year Aggr. (1) (2 (3 (@) (6 (6 (7 () (9 @19

2003 0.61 134 030 050 054 059 020 091 079 1.20 0.85
2004 0.57 1.27 0.29 042 048 061 024 094 095 1.21 0.56
2005 0.63 182 0.38 043 051 0.64 028 096 082 1.28 0.54
2006 0.63 149 0.43 045 052 065 0.26 092 0.73 127 0.62
2007 0.64 164 031 0.59 058 0.74 027 08 0.88 138 0.83
2008 0.69 18 035 0.57 063 0.85 018 1.06 0.82 143 0.78
2009 0.68 145 037 049 066 098 020 1.08 0.71 1.26 0.69
2010 0.59 140 0.23 0.51 057 089 0.15 082 080 144 0.46
2011  0.63 167 0.28 045 057 110 0.11 075 0.73 160 0.70
2012 0.72 191 0.61 047 044 107 013 094 080 155 0.69
2013 0.72 164 062 0.51 044 101 0.09 1.00 083 1.51 0.71
2014 0.65 143 057 056 037 096 011 093 064 149 0.61
2015 0.60 142 048 046 035 0.82 010 098 0.56 144 0.55

Source: our elaborations based on COMTRADE data (HS 2002). Notes: (i) RCA > 1 denotes that a
sector represents a larger share in a country’s exports than in total world exports, hence the country
is specialised in that sector (see the seminal reference by Balassa 1965); (ii) since COMTRADE data
are 6-digit, the 8-digit codes listed in Numerically controlled machines in Table Al are included in
Automatic Machine tools; (iii) for the same reason, 3-D printers are defined more broadly, as 6-digit
code 847780; (iii) column Aggr. refers to the sum of components (1) to (10), which is our automation
measure.

Table A3: OECD taxonomy of digital intensive sectors

Sector denomination ISIC rev.4  Quartile of digital intensity
Food products, beverages and tobacco 10-12 Low
Textiles, wearing apparel, leather 13-15 Medium-low
Coke and refined petroleum products 19 Medium-low
Chemicals and chemical products 20 Medium-low
Pharmaceutical products 21 Medium-low
Rubber and plastics products 22-23 Medium-low
Basic metals and fabricated metal products 24-25 Medium-low
Electrical equipment 27 Medium-high
Wood and paper products, and printing 16-18 Medium-high
Furniture and other manufacturing, repairs of computers 31-33 Medium-high
Computer, electronic and optical products 26 High
Machinery and equipment n.e.c. 28 High
Transport equipment 29-30 High

Source: Calvino et al. (2018), Table 3, column 2001-03.
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Table A4: Descriptive statistics on firms with/without imports of capital goods embedding
automation technologies.

Non-importers of automation Importers of automation  T-test

mean sd median mean sd median
Employment 23.22 60.15 10.00 141.11  853.31 38.00  F**
Growth rate -0.60 29.86 0.00 -0.77 26.65 0.00 ok
Hourly labour productivity 35.20 275.57 26.51 40.07  580.65 30.05 X
Hourly labour productivity growth — 0.81 43.01 1.40 1.22 37.93 1.77  FF*
Capital intensity 43.74 1090.59 17.14 87.93 6257.03 29.72 R
CS3 share 10.11 16.62 4.00 12.56 14.27 8.76 X
Exporter 45.93 49.83 0.00 75.54 42.98 100.00  ***
Importer 51.34 49.98 100.00 84.49 36.20  100.00  ***
Age 20.56 16.49 17.00 25.74 19.24 21.00  FeX

Notes: Two-sample t-test of difference in means; *, ** and *** denote p<0.10, p<0.05 and p<0.01,
respectively.
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B Robustness checks

Table B1: Automation spikes and 1-digit occupational categories’ shares, by subperiod.

Dep. var.: CS3 CS4 CS5 CS6
Share of Engineers, Supervisors Clerical Production
professionals, and workers workers

and managers technicians

(a) Subperiod: 2002-2008

Spike;_o 0.003 -0.003 0.000 -0.000
0.003 0.005 0.004 0.005
Spike;_1 0.005 0.005 -0.003 -0.004
0.004 0.006 0.004 0.006
Spike; 0.006 -0.007 -0.000 0.005
0.004 0.005 0.005 0.006
Spikey 1 0.006 -0.000 -0.002 0.001
0.005 0.007 0.005 0.008
Spikeso 0.005 -0.007 0.003 0.004
0.007 0.007 0.006 0.008
Nb. obs. 223,896 223,896 223,896 223,896
Nb. firms 37,182 37,182 37,182 37,182
Adj. R? 0.623 0.619 0.634 0.739

(b) Subperiod: 2009-2015

Spike;_s -0.004 0.000 -0.001 0.005
0.004 0.005 0.005 0.006
Spike;_1 -0.002 -0.001 -0.000 0.001
0.003 0.004 0.004 0.006
Spike; 0.001 -0.000 -0.002 0.002
0.003 0.004 0.003 0.005
Spike; 1 -0.001 0.003 -0.005 0.002
0.003 0.005 0.004 0.005
Spikey 42 -0.003 0.005 -0.002 -0.004
0.003 0.004 0.004 0.005
Nb. obs. 219,681 219,681 219,681 219,681
Nb. firms 36,237 36,237 36,237 36,237
Adj. R? 0.726 0.703 0.706 0.792

Notes: Propensity score reweighting estimation of Equation 4. Coefficients on the sector-year dum-
mies and the constant term are omitted. *, ** and *** denote p<0.10, p<0.05 and p<0.01, respec-
tively (based on robust standard errors, clustered at the firm level and displayed below coefficients).
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Table B2: Automation spikes and 2-digit occupational categories’ shares, by subperiod.

Dep. var.: CS37 CS38 CS46 CS47 CS48 CS54 CS62 CS63 CS67
Share of
(a) Subperiod: 2002-2008
Spike;_o 0.000 0.003 0.001 -0.001 -0.002 0.000 -0.000 -0.001 -0.001
0.003 0.003 0.003 0.003 0.002 0.004 0.006 0.003 0.004
Spike;_q 0.001 0.003 0.006 0.002 -0.001 -0.000 -0.006 0.001 0.002
0.003 0.003 0.004 0.004 0.002 0.004 0.006 0.004 0.005
Spike; 0.001 0.006* -0.001 -0.002 -0.001 0.001 0.009 0.000 -0.004
0.003 0.004 0.004 0.003 0.002 0.004 0.006 0.003 0.005
Spike; 41 0.002 0.006 0.003 -0.004 0.002 -0.002 0.004 0.005 -0.003
0.003 0.005 0.004 0.005 0.004 0.005 0.009 0.006 0.006
Spike; o 0.004 0.001 0.004  -0.011**  -0.001 0.004 -0.006 0.009* 0.006
0.005 0.004 0.006 0.005 0.003 0.006 0.009 0.005 0.007
Nb. obs. 223,896 223,896 223,896 223,896 223,896 223,896 223,896 223,896 223,896
Nb. firms 37,182 37,182 37,182 37,182 37,182 37,182 37,182 37,182 37,182
Adj. R? 0.485 0.541 0.625 0.580 0.443 0.584 0.663 0.581 0.654
(b) Subperiod: 2009-2015
Spike;_o -0.001 -0.004 -0.003 0.002 0.001 -0.004 -0.002 -0.000 0.002
0.003 0.003 0.003 0.004 0.002 0.004 0.005 0.003 0.005
Spike;_1 -0.000 -0.001 -0.002 -0.001 0.001 -0.002 -0.004 0.001 0.000
0.002 0.002 0.003 0.003 0.002 0.004 0.005 0.003 0.005
Spike; -0.000 0.001 -0.000 0.001 -0.001 -0.003 0.003 -0.001 -0.001
0.002 0.002 0.003 0.003 0.002 0.003 0.005 0.002 0.004
Spiket 1 -0.001 0.000 0.002 0.002 -0.000 -0.003 0.001 -0.000 0.001
0.003 0.003 0.003 0.003 0.002 0.004 0.005 0.003 0.004
Spikey o -0.005%** 0.002 0.001 0.001 0.001 0.000 -0.005 -0.000 0.003
0.002 0.003 0.002 0.003 0.002 0.003 0.005 0.003 0.004
Nb. obs. 219,681 219,681 219,681 219,681 219,681 219,681 219,681 219,681 219,681
Nb. firms 36,237 36,237 36,237 36,237 36,237 36,237 36,237 36,237 36,237
Adj. R? 0.595 0.683 0.637 0.725 0.560 0.699 0.770 0.719 0.768

Notes: Propensity score reweighting estimation of Equation 4. CS37: Top managers and professionals;
(CS38: Technical managers and engineers; CS46: Mid-level managers & professionals; CS47: Techni-
cians; CS48: Supervisors and foremen; CS54: Office workers; CS62: Skilled industrial workers; CS63:
Skilled manual laborers; CS67: Unskilled industrial workers. Coefficients on the sector-year dummies
and the constant term are omitted. *, ** and *** denote p<0.10, p<0.05 and p<0.01, respectively
(based on robust standard errors, clustered at the firm level and displayed below coefficients).
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Table B3: Automation spikes and gross worker flows, sample restricted to firms with at least
50 employees.

Dep. var.: Net growth Hiring Separation
rate rate rate
Spike;_o 0.001 -0.005 -0.006
0.010 0.005 0.009
Spike; 1 0.013 0.007 -0.006
0.014 0.010 0.009
Spike; 0.049*** 0.035%** -0.014**
0.014 0.012 0.006
Spike; 11 0.010 0.004 -0.005
0.007 0.006 0.006
Spikes o -0.010 -0.000 0.010
0.014 0.007 0.012
Nb. obs. 81,202 81,202 81,202
Nb. firms 6,851 6,851 6,851
Adj. R? 0.030 0.182 0.129

Notes: Propensity score reweighting estimation of Equation 2. Coefficients on the sector-year dum-
mies and the constant term are omitted. *, ** and *** denote p<0.10, p<0.05 and p<0.01, respec-
tively (based on robust standard errors, clustered at the firm level and displayed below coefficients).

Table B4: Automation spikes and worker flows: propensity score reweighting estimator,
single-plant firms only.

Dep. var.: Net growth Hiring Separation
rate rate rate
Spike;_o 0.010 0.004 -0.006
0.007 0.006 0.006
Spike; 1 -0.004 -0.010%* -0.006
0.007 0.006 0.005
Spike; 0.025%** 0.009 -0.016%**
0.006 0.006 0.005
Spike; 11 -0.014%* -0.010%* 0.004
0.006 0.005 0.005
Spikes o -0.022%** -0.014%%* 0.008
0.008 0.005 0.006
Nb. obs. 238,095 238,095 238,095
Nb. firms 22,257 22,258 22,259
Adj. R? -0.001 0.227 0.157

Notes: Propensity score reweighting estimation of Equation 2. Coefficients on the sector-year dum-
mies and the constant term are omitted. *, ** and *** denote p<0.10, p<0.05 and p<0.01, respec-
tively (based on robust standard errors, clustered at the firm level and displayed below coefficients).
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Table B5: Automation spikes and worker flows: propensity score reweighting estimator,
removing firms that both import and export automated goods.

Dep. var.: Net growth Hiring Separation
rate rate rate
Spike;_o 0.006 -0.002 -0.007
0.007 0.007 0.006
Spike;_1 -0.010 -0.004 0.006
0.007 0.007 0.006
Spike; 0.026*** 0.009 -0.017%%*
0.006 0.007 0.006
Spike; 1 -0.018%** -0.008 0.009
0.007 0.007 0.006
Spikesyo -0.011 -0.005 0.006
0.008 0.007 0.007
Nb. obs. 372,905 372,905 372,905
Nb. firms 34,583 34,584 34,585
Adj. R? 0.002 0.192 0.127

Notes: Propensity score reweighting estimation of Equation 2. Coefficients on the sector-year dum-
mies and the constant term are omitted. *, ** and *** denote p<0.10, p<0.05 and p<0.01, respec-
tively (based on robust standard errors, clustered at the firm level and displayed below coefficients).

Table B6: Automation spikes and worker flows: propensity score reweighting estimator, with
physical investment spike (Inv. Spike) as a control.

Dep. var.: Net growth Hiring Separation
rate rate rate
Spike;_o 0.009* -0.000 -0.009*
(0.005) (0.005) (0.005)
Spike;_1 -0.005 -0.005 -0.000
(0.005) (0.005) (0.005)
Spike; 0.025%** 0.006 -0.018***
(0.005) (0.005) (0.005)
Spike;41 -0.012%* -0.007 0.005
(0.005) (0.005) (0.005)
Spike; o -0.014%** -0.007 0.008
(0.006) (0.005) (0.006)
Inv. Spike; 0.064*** 0.080*** -0.016%**
(0.004) (0.004) (0.003)
Nb. obs. 443,577 443,577 443,577
Nb. firms 40,247 40,247 40,247
Adj. R? 0.008 0.196 0.126

Notes: Propensity score reweighting estimation of Equation 2. Coefficients on the sector-year dum-
mies and the constant term are omitted. *, ** and *** denote p<0.10, p<0.05 and p<0.01, respec-
tively (based on robust standard errors, clustered at the firm level and displayed below coefficients).
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Table B7: Automation spikes and worker flows: propensity score reweighting estimator, only
spikes with ratio between the value of automated investments in the year of the spike and
the average value in all the other years above 3 (threshold o la Bessen et al., 2019).

Dep. var.: Net growth Hiring Separation
rate rate rate
Spike; o 0.006 -0.001 -0.006
0.006 0.005 0.005
Spike;_1 -0.006 -0.005 0.001
0.006 0.006 0.005
Spike; 0.028*** 0.011%* -0.017%%*
0.006 0.006 0.005
Spikes 1 -0.010%* -0.006 0.004
0.006 0.005 0.005
Spike; o -0.016** -0.007 0.010
0.007 0.006 0.006
Nb. obs. 443,577 443,577 443,577
Nb. firms 40,247 40,248 40,249
Adj. R? 0.005 0.191 0.125

Notes: Propensity score reweighting estimation of Equation 2. Coefficients on the sector-year dum-
mies and the constant term are omitted. *, ** and *** denote p<0.10, p<<0.05 and p<0.01, respec-
tively (based on robust standard errors, clustered at the firm level and displayed below coefficients).

Table B8: Automation spikes and worker flows: propensity score reweighting estimator, on
the sample of firms importing capital goods embedding automation technologies in at least
one year (i.e., firms with an automation spike).

Dep. var.: Net growth Hiring Separation
rate rate rate
Spike;_o 0.009 -0.001 -0.010**
0.005 0.005 0.005
Spike;_1 -0.006 -0.006 -0.000
0.005 0.005 0.005
Spike; 0.027%%* 0.011%* -0.017***
0.005 0.005 0.005
Spike; 41 -0.012%* -0.007 0.006
0.005 0.005 0.005
Spike; 4o -0.015%** -0.006 0.008
0.006 0.005 0.006
Nb. obs. 137,796 137,796 137,796
Nb. firms 11,329 11,330 11,331
Adj. R? 0.023 0.204 0.139

Notes: Propensity score reweighting estimation of Equation 2. Coefficients on the sector-year dum-
mies and the constant term are omitted. *, ** and *** denote p<0.10, p<<0.05 and p<0.01, respec-
tively (based on robust standard errors, clustered at the firm level and displayed below coefficients).
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